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In this chapter, we review some of the central concepts of Game Theory. These include
the celebrated theorem of John Nash which gives us an insight into equilibrium behaviour
of interactions between multiple individuals. We will also develop some of the mathematical
machinery which will prove useful in our understanding of learning algorithms. Finally, we
will discuss why learning is a useful concept and the real world successes that multi-agent
learning has achieved in the past few years.

We provide many of the important proofs in the Appendix for those readers who are
interested. However, these are by no means required to understand the subsequent chapters.

1 What is a Game?

What is the first image that comes to mind when you think of a game? For most people,
it would be something like chess, hide and seek or perhaps even a video game. In fact, all
of these can be studied under Game Theoretical terms, but we can extend our domain of
interest much further. We do this by understanding what all of our above examples have in
common

I There are multiple players

II All players want to win the game

III There are rules which dictate who wins the game

IV Each player’s behaviour will depend on the behaviour of the others

With these in place, we can extend our analysis to almost any interaction between mul-
tiple players. Let us look at some examples, noticing in each, that components of a game
that we discussed above show up in each of the following.

Example 1 (The Ultimatum Game [3]). Let us consider that there are two players, the first
of which is called the Proposer. The Proposer is given a sum of money, say £10 and is
required to offer some of it to the second player, called the Responder. The Responder will
then either accept or reject this offer. If accepted, both players will receive the money as the
per the Proposer’s suggestion. If it is rejected, both players receive nothing. What would be
the likely outcome of this game? From the Proposer’s perspective, the selfish choice would be
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to offer as little as possible, say £9.99. The Responder’s rational choice would be to accept
whatever is offered, since they would otherwise end up with nothing.

This game has been studied extensively by experimental economists as a way of under-
standing the degree to which people act ‘fairly’. The interested reader is pointed to [9] for an
exposition into the incredibly interesting results of these experiments.

Example 2 (The El Farol Bar problem). In this example, there are a group of N (let us say
100) people who must decide whether or not to go to a bar. The space is limited and nobody
wants to go to a crowded bar. In particular let us say that the bar is ‘crowded’ if there are
more than 60 people in attendance. Now, since there is no way to tell in advance who will go
and who will not, each agent must make decide whether or not to go based on if they expect
fewer than 60 people to be in attendance.

This is example is a particular case of the family of Minority Games, as each agent wants
to be in the minority group. Another, more timely example of this would include travel plans
upon the lifting of lockdown restrictions - if I anticipate that many people will want to go on
holiday immediately, then I would prefer not to travel immediately.

Minority Games are the object of intense study from the point of view of dynamics and
statistical physics (c.f. [2]) as we will see when we revisit them later in these lectures.

Example 3 (The Prisoner’s Dilemma). Consider the following. Two criminals are arrested
due to their connection with a serious crime. They have the options to: choose to confess
to the crime or accept the punishment for some less serious crime that they have also been
charged with. The judge offers them the following deal

• If they both confess, they will receive a reduced sentenced of five years for their crime.

• If only one confesses, whilst the other keeps shut, then the former will walk free, ac-
quitted of both charges, whilst the other will receive the full penalty for their crime: a
total of 20 years in prison.

Of course, if neither of them confess, then they can only be sentenced for their less serious
crime and so will receive a sentence of a single year.

Now notice, that the cost that each player incurs (i.e. their sentence) is dependent, not
only on their own actions, but also those of their opponent (namely the other prisoner). A
common way to model this situation is through a Payoff Matrix, which is a table that tells
us the utility of each player’s action, depending on the action of the other player. For the
Prisoner’s Dilemma Game, we can write the payoff matrix as(

(−5,−5) (0,−20)
(−20, 0) (−1,−1)

)
(1)

Where, in each element of the matrix, the tuple (uA, uB) denotes the payoffs received by
player one and two respectively. This idea is also depicted in Figure 11. Each agent will then
try to maximise their payoff, which in this context means minimising their sentence.

1Picture Credits: Vecteezy

vecteezy.com
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Figure 1: The Prisoner’s Dilemma Game in Example 3

Example 4 (Rock-Paper-Scissors). In our final example, we consider the classic Rock-Paper-
Scissors game2. For the uninitiated, the Rock-Paper-Scissors game is a two player game
where each player must select either Rock, Paper, or Scissors as their action. In this format,
Rock defeats Scissors, Scissors defeats Paper and Paper defeats Rock. To formalise the
notion of ‘winning’ and ‘losing’ in this context, we say that the player with the winning
action receives a payoff of 1, whilst the losing player receives payoff −1. If the players
pick the same action, the game results in a draw and both players receive 0 payoff. So, for
instance, if the first player plays rock and the second plays scissors, then the payoff received
by both agents is given by the tuple (uA, uB) = (1,−1), indicating that the first player has
won the game. The matrix is then given as(0, 0), (−1, 1), (1,−1)

(1,−1), (0, 0), (−1, 1)
(−1, 1), (1,−1), (0, 0)

 (2)

With the above motivation, we can now write a definition of a game3.

Definition (Game). An N -player game is the tuple Γ = (N , (Sµ, uµ)µ∈N ), where N =
{1, . . . , N} is the set of all players (also called ‘agents’), Sµ is the set of actions available to
agent µ and uµ : ×µSµ → R is the payoff function associated to agent µ. Note that this
payoff function is dependent on the actions of all players.

2We choose to forego the much more complicated Rock-Paper-Scissors-Lizard-Spock game as an avenue
for future work

3This is actually the definition of a normal form game, which is the game that we will mostly be studying.
There are other, more complex, games including extensive form games and Bayesian games, which are
interesting in their own right. However, for our purposes we can use the word ‘game’ to refer exclusively to
normal form games
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Note that the number of actions (also called strategies) available to each agent µ is given
by the cardinality4 of their associated action set. We denote this as |Sµ|

A special type of game which we will be considering is that of a bimatrix game, in which
there are two players whose payoff functions uµ can be represented through a payoff matrix.

Definition (Bimatrix Game). Let n := |S1|, m := |S2|. Then, a bimatrix game is the tuple
(A, B), A,B ∈ Mn×m(R). Here, (A)ij (resp. (B)ij) denotes the payoff received by player
one (resp. player two) when player one plays action i and player two plays action j.

Most of Mathematical Game Theory, including the Dynamics of Games, concerns itself
with the study of bimatrix games in which n = m, although these assumptions are not
always necessary.

The final two of our above examples, namely the Prisoner’s Dilemma and Rock-Paper-
Scissors game, are common objects of study in Game Theory. Both are n×n bimatrix games
with, and we will revisit them often.

2 The Nash Equilibrium

Let us look at the Prisoner’s Dilemma in a little more depth. What does game theory predict
will be the outcome of this game?

• If the first prisoner thinks that the other is going to confess, then his best option is to
confess as well. That way he will only receive 5 years in prison. However, if he thinks
the other player is not going to deny then his best option is still to confess, since he
will be able to walk free. Either way, he should confess.

• Now what about the second prisoner? She goes through the same thought process and
realises that, regardless of player one’s action, her best option is to confess. That way
she will get the lowest sentence.

• Both players realise that their best option is to confess and so this is the outcome of
the game.

This outcome is what is known as a pure Nash Equilibrium (NE), after the famous John
Forbes Nash. Informally a pure NE is the choice which both agents realise is their best
option, and so have no reason to deviate from it. Formally, we have the following definition
of a pure NE in a bimatrix game.

Definition (Pure Nash Equilibrium). In a bimatrix game, a pure Nash Equilibrium is a
joint strategy (s̄1, s̄2) ∈ S1 × S2 such that

u1(s1, s̄2) ≤ u1(s̄1, s̄2) ∀s1 ∈ S1 (3)

u2(s̄1, s2) ≤ u2(s̄1, s̄2) ∀s2 ∈ S2 (4)

4number of elements in the set
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What is particularly interesting about the Prisoner’s Dilemma is that, even though both
players would have been better off if they had both denied the charges, since they made
their decision as independent, rational agents, they ended up choosing the worse strategy
in which they both confess. This situation is an example of the tragedy of the commons [6]
which, loosely stated is a situation in which, if all agents act according to selfish pursuit of
their own interests, the overall result is worse than if they had acted in accordance with the
overall social welfare.

2.1 Mixed Nash Equilibria

Is it always the case that a pure Nash Equilibrium exists? The answer to this is a clear
and resounding no and can be illustrated through the last of our examples: the Rock-Paper-
Scissors game. In this instance if the first agent is to play, for example, rock, then the second
agent’s optimal choice is to play paper. Similarly, if I play paper, your best response is to
play scissors and, of course, we can continue this idea for scissors. As such, there is no single
joint strategy of player one and player two such that neither has any incentive to deviate.

However, what if we were to allow agents to randomise their strategy? Consider the
following situation

• Player one plays each action with probability P1(Rock) = p1, P1(Paper) = p2,
P1(Scissors) = p3.

• Player two plays each action as P2(Rock) = q1, P2(Paper) = q2, P2(Scissors) = q3.

The probability vector p = (p1, p2, p3)T (resp. q) is called player one’s (resp. two’s) mixed
strategy and, of course, must satisfy p1 + p2 + p3 = 1. These probability vectors take their
values in the unit-simplex, given (for player 1) by ∆1 = {p ∈ Rn|

∑
i pi = 1} ⊂ Rn. The unit

simplices in R2 and R3 are depicted in Figure 2. Notice that they form (n−1)− dimensional
surfaces and so we often only show the projections (a line for n = 2 and a triangle for n = 3).

Now, we can consider asking what the expected payoff received by player two is. This is
given by

E[u2(i, j)](p,q) = E[(B)ij](p,q) =
∑
ij

(B)ijpiqj = p ·Bq (5)

Now, a mixed Nash Equilibrium is a joint mixed strategy which maximises the agent’s
expected payoff. Formally we have the following definition.

Definition (Mixed Nash Equilibrium). Consider the bimatrix game (A,B). A mixed Nash
Equilibrium is a joint mixed strategy (p̄, q̄) ∈ ∆1 ×∆2 such that

p ·Aq̄ ≤ p̄ ·Aq̄ ∀p ∈ ∆1 (6)

p̄ ·Bq ≤ p̄ ·Bq̄ ∀q ∈ ∆2 (7)

A mixed NE is called strict if the inequality is strict
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(a) The unit simplex in R2 (b) The unit simplex in R3

Figure 2: The unit simplices in (a) R2 and (b) R3. Since probability vectors have one constraint,
they have n− 1 degrees of freedom and so the simplex forms an (n− 1) dimensional surface.

Some simple computation, which we leave as an exercise to the reader, allows us to verify
that the joint strategy p̄ = (1/3, 1/3, 1/3)T , q̄ = (1/3, 1/3, 1/3)T is a mixed NE for the
Rock-Paper-Scissors game.

We note that a pure strategy i corresponds to the mixed strategy which has 1 in the i’th
component and 0 everywhere else. In other words this is the unit vector ei.

Now we can ask whether a mixed Nash Equilibrium always exists. The following theorem
by J.F. Nash shows that this is indeed the case and is the reason why this equilibrium is
named in his honour.

Theorem 1 (Nash [5]). Every game with a finite number of players and actions admits at
least one mixed Nash equilibrium.

What is interesting about this theorem is that it’s proof is a ‘simple’ application of a
fixed point theorem (specifically Brouwer’s fixed point theorem) [1]. We report this proof,
along with the prerequisite fixed point theorem, in the Appendix.

Finally, we introduce the following Lemma, which will later be useful in giving the Nash
Equilibrium5 a more dynamical interpretation.

Lemma 1. In a bimatrix game (A,B) a joint strategy p̄, q̄ is an NE if and only if (Aq̄)i =
const. for any i such that qi ≥ 0 and (p̄TB)j = const. for any j such that pj ≥ 0. In
particular (Aq̄)i = p̄ ·Aq̄ and (p̄TB)j = p̄ ·Bq̄.

Proof. We begin by noticing that (Aq̄)i = ei ·Aq̄, where ei is the unit vector with 1 in the
i’th element and 0 elsewhere. In addition, due to the NE condition, we must have that, for
all i, ei ·Aq̄ ≤ p̄ ·Aq̄. Finally, we have that, since it is a probability vector, p̄ can be written
as a convex combination of ei. In particular, p̄ =

∑
i λ̄iei, where λ̄i ∈ [0, 1] and

∑
i λ̄i = 1.

Then,

5at this point, we refer to mixed NE as the Nash Equilibrium since, as we mentioned, the pure case simply
corresponds to a unit vector
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p̄ ·Aq̄ =

(∑
i

λ̄iei

)
·Aq̄ =

(∑
i

λ̄iei ·Aq̄

)
≤

(∑
i

λ̄ip̄ ·Aq̄

)
= p̄ ·Aq̄

For this to be consistent, we cannot have the inequality being strict (since otherwise
p̄ ·Aq̄ < p̄ ·Aq̄ which does not make sense). Therefore, we must have that ei ·Aq̄ = p̄ ·Aq̄
for all i. The analagous argument also holds for (p̄TB)j.

3 Best Responses

An equivalent way in which to define the Nash equilibrium is through the so called best
response correspondence. To motivate this, let us note that the definition of Nash Equilibrium
can be written in the following manner:

p ·Aq̄ ≤ p̄ ·Aq̄ ∀p ∈ ∆1 =⇒ p̄ ∈ arg max
p∈∆1

p ·Aq̄

p̄ ·Bq ≤ p̄ ·Bq̄ ∀q ∈ ∆2 =⇒ q̄ ∈ arg max
q∈∆2

p̄ ·Bq

With this in place, we define the best response correspondence as the set valued map
which, for each player, looks at the strategy of the opponent and assigns the mixed strategy
which maximises the player’s payoff. More formally, we have the following definition

Definition (Best Response Correspondence). Let (A,B) be a bimatrix game and let P(∆)
denote the power set of ∆. Then BRA : ∆2 → P(∆1), BRB : ∆1 → P(∆2) are such that,
for any (p,q) ∈ ∆1 ×∆2

BRA(q) := arg max
p∈∆1

p ·Aq BRB(p) arg max
q∈∆2

p ·Bq

Example 5. Consider the bimatrix game (A,B) defined by

A =

 1 0 0.5
0.5 1 0
0 0.5 1

 B =

−0.5 1 0
0 −0.5 1
1 0 −0.5

 (8)

This game is part of a family of bimatrix games known as the ‘Shapley’ family (after
Nobel Prize winner Lloyd Shapley) and we will revisit it in our exposition of the Best Re-
sponse/Fictitious Play dynamics.

Let us assume that the second player is playing the mixed strategy (0.5, 0.3, 0.2)T . What
would player one’s best response be?
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BRA((0.5, 0.3, 0.2)T ) = arg max
p∈∆1

p ·

 1 0 0.5
0.5 1 0
0 0.5 1

0.5
0.3
0.2


= arg max

p∈∆1

p ·

 0.6
0.55
0.35


=

1
0
0


= e1

With this in mind, we can write an alternate definition of the Nash Equilibrium in terms
of the best response correspondence.

Definition (Alternate Definition of Nash Equilibrium). Let (A,B) be a bimatrix game. A
joint mixed strategy (p̄, q̄) ∈ ∆1 ×∆2 is a Nash equilibrium if

p̄ ∈ BRA(q̄) q̄ ∈ BRB(p̄) (9)

The best response correspondences are almost everywhere single valued. In particular, it
will almost always give the singleton {ei} where ei is one of the unit vectors corresponding
to a pure strategy. In the case that it takes on multiple values, it is the convex combination
of a subset of all the unit vectors, which could include the simplex itself.

Example 6. Let us reconsider the bimatrix game from Example 5. We already saw that the
best response of player one to q = (0.5, 0.3, 0.2)T is e1. Let us generalise this result

Aq =

 1 0 0.5
0.5 1 0
0 0.5 1

q1

q2

q3

 =

q1 + 0.5q3

0.5q1 + q2

0.5q2 + q3

 (10)

So, then, if q1 > q2 and q1 > q3, then player one’s best response is e1. Similarly, if q2

dominates q1 and q3 then the best response is e2. We can do a similar process for player
two’s strategy.

pTB =
(
p1 p2 p3

)−0.5 1 0
0 −0.5 1
1 0 −0.5

 =

p2 − 0.5p1

p1 − 0.5p2

p2 − 0.5p3

 (11)

So that if p2 > p1 and p2 > p3 then player two’s best response is to play e3 and so on.
We can plot the values of p for which player two’s best response is any ei and similarly

the values of q for which player one’s best response is ej. This is shown in Figure
Let us consider the case in which player two plays q = (1/3, 1/3, 1/3)T . Then it can be

seen that player one’s has best response
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Figure 3: Division of the simplices ∆1, ∆2 for Example 6. In ∆1, the blue portion corresponds
to those values for p for which player two’s best response is e3. The orange portion corresponds
to those for which two’s best response is e1 and finally if p lies in the green region then two’s best
response is e2. The same is true for the division of ∆2.

1/3
1/3
1/3

 ∈ arg max
p∈∆2

0.5
0.5
0.5

 (12)

And similarly for player two if one plays p = (1/3, 1/3, 1/3)T . By Definition 3 the joint
strategy (p̄, q̄) = ((1/3, 1/3, 1/3)T , (1/3, 1/3, 1/3)T ) is a Nash Equilibrium of (A,B).

As we saw from the above example, we can break up the simplices ∆1 and ∆2 according
to the values that the best response map takes. In particular we define [7]

RB
j := (BRB)−1(ej) ⊂ ∆1 for j = 1, . . . , n

RA
i := (BRA)−1(ei) ⊂ ∆2 for i = 1, . . . ,m.

RA
i denotes the preference region of i in ∆2. If player two’s mixed strategy takes its value

in RA
i , then player one’s best response is ei. Now, the intersections between two preference

regions RA
i and RA

j correspond to the case in which the BRA yields two pure strategies, ei
and ej. This intersection is referred to as an indifference plane [7], due to the fact that the
payoff received by player one is equal if they were to choose either ei or ej (or, indeed, any
of their convex combinations). Formally it is given as

ZA
ij := RA

i ∩RA
j = {q ∈ ∆2|(Aq)i = (Aq)j ≥ (Aq)k ∀k = 1, . . . ,m} ⊂ ∆2 (13)
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Similarly, for player two’s indifference planes we have

ZB
ij := RB

i ∩RB
j = {p ∈ ∆1|(pTA)i = (pTA)j ≥ (pTA)k ∀k = 1, . . . , n} ⊂ ∆1 (14)

Finally, using Lemma 1 we can state the following

Corollary 1. In a bimatrix game (A,B), the point (p̄, q̄) ∈ int∆1 × ∆2 is an NE if and
only if p̄ lies on the intersection of all preference regions in ∆1 and q̄ lies on the intersection
of all preference regions in ∆2. Equivalently, (p̄, q̄) is an NE if and only if p̄ lies on the
intersection of all indifference planes in ∆1 and q̄ lies on the intersection of all indifference
planes in ∆2.

4 The Case for Learning

Let us look back at the Prisoner’s Dilemma and consider what it took for both parties
to decide that they would confess. Both players looked at the possible actions that the
other agent had available and evaluated, given either action of the other agent, what their
payoff maximising strategy would be. This requires that, in the heat of the moment, an
agent should have a complete understanding of how their actions, in conjunction with those
of their neighbours affects their payoff. Further, it requires that the agent always makes a
rational decision based on this information. In fact, in the appendix we discuss the celebrated
minimax theorem of John von Neumann which, in some sense, illustrates how the agents view
the game when playing an NE.

We do not need to look far to realise that, in the real world, individuals do not satisfy
these requirements. Neither are we always aware of the actions available to us, nor do
we always make the most rational decision. In many ways, then, the concept of the Nash
Equilibria requires what Susan Wolf refers to as the moral saint - a character whose ”every
action is as morally good as possible, that is, who is as morally worthy as can be”. This
ideal is rarely achieved in practice and, therefore, it can be argued that the NE is not an
accurate way in which to assess the behaviour of the economy, or of population ecology.

What about computers? Whilst we might say that artificial agents can be considered
as purely rational agents, and that the payoffs of each agent are typically provided by the
designers, it would still require that we compute the NE. Typically finding the NE is achieved
by framing the problem as a linear program (see [6] for examples). However, the task of
finding the NE in general N -player, n-action games is not always so straightforward. The
interested reader should consider reading the classical book ‘Algorithmic Game Theory’ [6]
in which the authors spend some time discussing the fact that computing the NE is PPAD-
complete (a concept which we will not discuss here, c.f. [6]), a class of algorithms which are
considered ’hard’ to solve, although it is unclear whether it falls into the class of polynomial
time algorithms or into the NP class.

So neither is the NE an easy quantity to compute, nor is it necessarily achieved in
practice. As such, we must look for a new way to analyse multi-agent interactions, as
well as design tractable computational solutions. For this, we turn to nature as our guide.
Specifically, we know that people base their actions on prior experience, and sometimes a
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prospective estimation on the consequences of their actions. This motivates the need for
learning algorithms.

Learning algorithms model the evolution of how agents choose their actions in their
interactions. In particular, they show how, based on their memory of playing a game in
the past, an agent will adapt the probabilities with which they favour certain actions over
others. In particular, the learning algorithms we will consider are

I The Replicator Dynamic

II Best Response and Fictitious Play

III Reinforcement Learning

This is, by no means, an exhaustive list of all learning algorithms. Rather, these are
chosen based on our own, limited, knowledge of the vast array of learning algorithms avail-
able. The interested reader should also consult [4, 8], which give an insight into various other
learning algorithms.

We will focus on the techniques which are used to analyse these systems from the view
of Dynamical Systems and Statistical Physics. Again, these are not the only lenses through
which we can view learning, and we hope that the reader will be inspired to understand
these same problems from other perspectives. We also hope that the reader will go on to
bring their own expertise to bear on the many open problems in this incredibly exciting and
active area of research.

5 Appendix

Existence of the Nash Equilibrium

As mentioned, the proof of the existence of the NE relies on Brouwer’s fixed point theorem.
This is a standard result from topology and so we do not go into the full details here.

Theorem 2 (Brouwer Fixed Point Theorem). Let X ⊂ Rn be convex and compact. If
T : X → X is continuous, then it admits a fixed point, i.e. a point x ∈ X such that
T (x) = x.

Proof. We prove this theorem for the one-dimensional case as it is a little simpler than the
general case. Since our set X is in R and is compact, we can write it as a closed and bounded
interval [a, b] and T : [a, b]→ [a, b]. Our goal is to show that a fixed point of T exists in this
interval. First, if either T (a) = a or T (b) = b, then we are done. Now let us look at the case
where the fixed point is neither at a or b. Then we can say that T (a) > a and T (b) < b.

Consider the function g(x) = T (x)− x. Then g(a) > 0 and g(b) < 0 and g is continuous,
since T is. Then, by the Intermediate Value Theorem, there is an x ∈ [a, b] such that
g(x) = 0, and so T (x) = x.

Theorem 3 (Existence of the Nash Equilibrium). Every game with a finite number of players
and actions admits at least one mixed Nash equilibrium.
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Proof. This proof works roughly as follows, first we define a continuous function which acts
on the product space of all agents simplices (which is compact). Therefore, by Brouwer’s
Theorem, this function must have a fixed point. We then show that, at this fixed point, the
NE condition is satisfied. Therefore, the game must admit an NE.

To recall our notation, a game consists of the set of players N and their set of actions
(resp. payoff function) Sµ (resp. uµ) ∀µ ∈ N . Let us denote the concatenation of all agents’
mixed strategies xµ as the vector x = (x1, . . . , xN).

Then, for some x ∈ ∆ := ×µ∆µ and sµ ∈ Sµ, define the function

Gµ
sµ(x) := max{uµ(sµ, x−µ)− uµ(x), 0}.

We can consider this to be the ‘incentive’ that agent µ has from deviating from the joint
mixed strategy x. In particular, if µ would receive a higher payoff by playing sµ rather than
xµ, then Gµ

sµ(x) = uµ(sµ, x−µ)− uµ(x) > 0.
Now define the function f : ∆→ ∆ through

fµsµ(x) =
xµ +Gµ

sµ(x)

1 +
∑

j G
µ
j (x)

(15)

This is a continuous function acting on a compact space ∆, so by Brouwer’s Fixed Point
Theorem, it must have a fixed point. Let us call this x̄.

Now we claim that
∑

j G
µ
j (x) = 0. To show this, let us assume for contradiction that∑

j G
µ
j (x) > 0 (it cannot be less than 0 due to the max operation). Now, if we multiply

across the fraction in (15), we get

fµsµ(x̄)(1 +
∑
j

Gµ
j (x̄)) = x̄µ +Gµ

sµ(x̄)

xµ(1 +
∑
j

Gµ
j (x̄)) = x̄µ +Gµ

sµ(x̄)

xµ
∑
j

Gµ
j (x̄) = Gµ

sµ(x̄)

Now, this means that if Gµ
sµ(x̄) = 0, then we must have that xµ = 0 (since we assumed∑

tµ G
µ
j (x̄) > 0). In particular, this means that we can define the set Iµ := {i : x̄µi > 0}

and say that it is contained in the set {i : Gµ
i (x̄) > 0}. As such, we have that

∑n
i=1 x̄

µ
i =∑

i∈Iµ x̄
µ
i = 1, where n is the total number of actions for agent µ.

This leads to the result

Gµ
i (x̄) > 0 =⇒ uµ(sµ, x̄−µ) > uµ(x̄)

=⇒ x̄µi u
µ(sµ, x̄−µ) > x̄µi u

µ(x̄)

=⇒ uµ(x̄) =
n∑
i=1

x̄µi u
µ(sµ, x̄−µ) ≥

∑
i∈Iµ

x̄µi u
µ(sµ, x̄−µ) >

∑
i∈Iµ

x̄µi u
µ(x̄) = uµ(x̄)
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which is clearly a contradiction. This means our initial assumption was wrong and that
we must have

∑
j G

µ
j (x) = 0. Again, due to the max operation, we cannot have negative

values in Gµ
j (x), so we must have that, for all j ∈ Sµ, Gµ

j (x) = 0 which is equivalent to the
statement that

uµ(j, x̄−µ) ≤ uµ(x̄) ∀j. (16)

This argument was independent of our choice of agent µ and so holds for all agents. This
was precisely the definition of the Nash Equilibrium.

The Minimax Theorem

TO DO
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